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Introduction

Now that we understand the theoretical behavior of ARIMA processes, we will
consider how to use ARIMA models to fit observed time series data and make
forecasts. Before beginning this work, an obvious question needs to be answered.
Why should we assume that some random time series can be adequately modeled
by an ARIMA process?

The Wold Decomposition Theorem provides some theoretical justifica-
tion. The decomposition theorem asserts that any covariance stationary process
Yt can be written as

Yt = Xt + Zt (1)

where Zt is a deterministic process, and Xt can be written as the moving average
of uncorrelated N(0, σ2

A) shocks. That is,

Xt = At +
∞∑
i=1

ψiAt−i (2)

where the Ai are independent N(0, σ2
A) random variables.

For our purposes, the deterministic part Zt can be dealt with separately.
In considering Xt, if the ψi coefficients decay quickly to 0, then it might be
appropriate to truncate the infinite sum after q terms. In this case we would
have an MA(q) model. Even if we can’t safely truncate the infinite series, we
can hope to find an ARMA(p,q) model whose ψ weights are a close match to
those of Xt.

Many time series are nonstationary. The only kind of nonstationarity sup-
ported by the ARIMA model is simple differencing of degree d. In practice, one
or two levels of differencing are often enough to reduce a nonstationary time
series to apparent stationarity.

We will use the following procedure to model a time series as an ARIMA
process and produce future forecasts.

1. Identify the appropriate degree of differencing d by differencing the time
series until appears to be stationary.

2. Remove any nonzero mean from the differenced time series.

1



3. Estimate the autocorrelation and PACF of the differenced zero mean time
series. Use these to determine the autoregressive order p and the moving
average order q.

4. Estimate the coefficients φ1, . . ., φp, θ1, . . ., θq. This can be done in a
variety of ways. One simple approach is to make sure that the resulting
autocorrelations match the observed autocorrelations. However, a more
robust method is maximum likelihood estimation.

5. Once the model has been fitted, we can produce future forecasts with
associated uncertainties.

Model Identification

The first step in our process is finding the appropriate value of d. It is a good
idea to begin this process by simply plotting the data. If the time series shows
a strong trend (growth or decline), then the process is clearly not stationary,
and it should be differenced at least once. The second test that we will use is to
examine the estimated autocorrelation of the time series. For a stationary time
series, the autocorrelations will typically decay rapidly to 0. For a nonstationary
time series, the autocorrelations will typically decay slowly if at all. Computing
the differenced time series is easy to do with the diff command in MATLAB.

The second step in our process is removing any nonzero mean from the
differenced time series W . This is a very straight forward computation- just
compute the mean of the time series, and subtract it from each element of
the time series. If the mean is small relative to the standard deviation of the
differenced time series W , then it should be safe to simply skip this step.

Example 1 Figures one through three show the analysis of a time series.
In figure 1a, notice that there are clear long term shifts in the average. In figure
1b, the autocorrelations do not decay quickly to zero. In figure 2a, there is still
a strong trend, and figure 2b shows that the autocorrelations are still not going
to 0 very quickly. Finally, figure 3a shows data that appear to be stationary
and figure 3b confirms that the autocorrelations die out quickly.

The mean for the second difference of the original time series is 2.12, and
the standard deviation for this time series is 1.58, so it seems wise to include
the mean in fitting an ARIMA model to the data.
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Figure 1: Example time series with no differencing.
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Figure 2: Example time series with d = 1.
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Figure 3: Example time series with d = 2.
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Order ρk φ̂kk
(1,0) exp decay only φ̂11 nonzero
(0,1) only ρ1 nonzero exp decay
(2,0) exp or damped sine wave only φ̂11, φ̂22 nonzero
(0,2) only ρ1,2 nonzero exp or damped sine wave
(1,1) exp decay exp decay

Table 1: Rules for selecting p and q.

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

n

r n

0 2 4 6 8 10 12 14 16 18 20
−0.2

0

0.2

0.4

0.6

0.8

n

φ nn

Figure 4: Estimated autocorrelation and PACF for the example time series.

The next step in the process is determining the autoregressive order p and
the moving average order q for the differenced time series W . Table 1 (taken
from BJR) summarizes the behavior of ARMA(p,q) processes for p = 0, 1, 2 and
q = 0, 1, 2.

Example 2 Continuing with the time series from the last example, we
removed the mean of 2.12, and then estimated the autocorrelations and partial
autocorrelation function. Figure 4 shows the estimated autocorrelations and
partial autocorrelation. Notice that both φ̂11 and φ̂22 are nonzero, and that the
rn appear to decay exponentially. This suggests that an ARIMA(2,2,0) model
would be appropriate.

Once we’ve determined p, d, and q, the final step is to estimate the actual
parameters φ1, . . ., φp, θ1, . . ., θq. One very simple approach can be used if we
have formulas for the autocorrelations in terms of the parameters. For example,
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Order ρ1 ρ2

(1,0) ρ1 = φ1

(0,1) ρ1 = −θ1/(1 + θ2
1)

(2,0) ρ1 = φ1/(1− φ2) ρ2 = (φ2
1)/(1− φ2) + φ2

(0,2) ρ1 = −θ1(1− θ2)/(1 + θ2
1 + θ2

2) ρ2 = −θ2/(+θ2
1 + θ2

2)
(1,1) ρ1 = (1− θ1φ1)(φ1 − θ1)/(1 + θ2

1 − 2φ1θ1) ρ2 = ρ1φ1

Table 2: Rules for selecting p and q.

for an AR(2) process, we know that

ρ1 =
φ1

1− φ2
(3)

and

ρ2 =
φ2

1

1− φ2
+ φ2. (4)

We can substitute our estimates r1 and r2 for the differenced time series and
solve these equations to obtain φ1 and φ2. Table 2 summarizes the equations
to be solved for the (1,0), (0,1), (2,0), (0,2) and (1,1) cases.

Example 3 Continuing our earlier example, we’ve decided to fit an AR(2)
model to wn. We have r1 = 0.7434 and r2 = 0.6844. Solving the above equations
for φ1 and φ2, we get the estimates φ1 = 0.5246 and φ2 = 0.2943. In fact, this
series was generated using φ1 = 0.5 and φ2 = 0.3.

This simple procedure for fitting the model parameters may be adequate
for some simple models, but it is not precise enough for some purposes, and it
cannot easily be extended to models in which p or q is large. We’ll move on to
the more sophisticated technique of maximum likelihood estimation.

Maximum Likelihood Estimation and Least Squares

Given a set of observations x1, x2, . . ., xn, which come from a probability
distribution with a parameter θ, how can we estimate the parameter θ?

Let f(x; θ) be the probability distribution function. Given θ, what is the
probability of obtaining a particular value xi?

P (X = xi) =
∫ xi

xi

f(x; θ)dx = 0. (5)

Because f is a probability density function, f(x; θi) is not a probability value.
However, we can integrate f(x; θi)dx over any interval to find the probability
thatX lies in that interval. In particular, we could integrate over a small interval
of width 2δ. The probability of obtaining a value of X in such an interval around
xi is roughly 2f(xi; θ)δ. If f(xi; θ) is very small, then the probability of obtaining
a value near xi is very small.
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The value of f(xi; θ) is called the likelihood of xi. More generally, given a
value of the parameter θ, the likelihood of the data set x1, x2, . . ., xn is

L(θ) = f(x1; θ)f(x2; θ) · · · f(xn; θ). (6)

The maximum likelihood principle asserts that we should select the
value θ̂ that maximizes L(θ). Maximizing L(θ) is a problem that depends very
much on the particular probability density function f(x; θ). In many cases, it
is possible to find an explicit formula for θ̂. In other cases, a general purpose
optimization algorithm can be applied to estimate θ̂.

Example 4 Suppose that the observations x1, x2, . . ., xn come from a
normal distribution known standard deviation σ and unknown mean µ. We
wish to estimate the mean µ.

In this case, the probability density function is

f(x;µ) =
1√

2πσ2
e−(x−µ)2/2σ2

(7)

The likelihood function is

L(µ) =
n∏
i=1

1√
2πσ2

e−(xi−µ)2/2σ2
(8)

Since the natural logarithm is a monotone increasing function, we can just as
easily maximize the logarithm of L(µ).

l(µ) = logL(µ) = n log
(

1√
2πσ2

)
−

n∑
i=1

(xi − µ)2

2σ2
. (9)

Since the first term is a constant, and the factor of 2σ2 in the denominator is
constant, maximizing L(µ) is equivalent to minimizing

S(µ) =
n∑
i=1

(xi − µ)2. (10)

This is a least squares problem. By differentiating with respect to µ and setting
the derivative equal to 0, we find that the optimal value of µ is

µ̂ =
∑n
i=1 xi
n

. (11)

Maximum Likelihood Estimation for an ARMA
Model

Now, consider the problem of fitting an ARM(p,q) model to a sequence w1, w2,
. . ., wn. Suppose that we also knew the values of w and a that preceeded the
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time series, as well as σ2
A. By using the model equations, we could compute a1,

a2, . . ., an.
The likelihood function associated with these a values is

L(φ, θ) =
n∏
t=1

1√
2πσ2

A

e

−a2
t

2σ2
A (12)

Ignoring constant factors and taking the logarithm, we’re left with the least
squares problem of minimizing

S(φ, θ) =
n∑
t=1

a2
t . (13)

In practice, we don’t have all of the previous values of a and w. We will use
a crude approximation that works well when time series is long compared to p
and q. We simply set a1, a2, . . ., aq to 0. If p > q, we also set all values of
w before w1 to 0. We then use the model equations to compute the remaining
values of a, and let

S∗(φ, θ) =
n∑

t=q+1

a2
t . (14)

Other more sophisticated estimates of the sum of squares are possible. See
Box, Jenkins, and Reinsel for details.

Now that we have an approximate sum of squares S∗(φ, θ), we’re left with
the problem of minimizing the sum of squares. This is a nonlinear least squares
optimization problem which we won’t discuss in this course. Suffice it to say
that algorithms such as the Levenberg-Marquardt method can be used to find
values of φ and θ that minimize S∗.

In performing this minimization, one problem that can occur is that we may
find an “optimal” model which is non stationary. In some cases it is possible
to introduce constraints in the optimization problem to eliminate these false
solutions. In practice, it’s often simpler to just check the resulting model for
stability.

Once optimal values of the parameters φ̂ and θ̂ have been found, we still need
to estimate σ2

A. Since there are n − q squares of at values in S∗, a reasonable
estimate is

σ̂2
A =

S∗(φ̂, θ̂)
n− q

. (15)

Depending on the amount of available time series data, there may be consid-
erable uncertainty in the model parameters φ and θ. The nonlinear least squares
procedure will also a parameter covariance matrix which gives the parameter
uncertainties. For convenience, we group the parameters into a single vector β.

β =
[
φ
θ

]
(16)
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The parameter covariance matrix is

C = 2σ̂2
A(JT (β̂)J(β̂))−1 (17)

where J(β) is the Jacobian matrix for the at.

Ji,k(β) =
∂ai
∂βk

(18)

Once we’ve found the parameter covariance matrix, an approximate 95%
confidence interval for a parameter βk is

βk = β̂k ± 1.96
√
Ck,k (19)

Be aware that these confidence intervals are often quite large. Unless we have a
very long time series, and σ2

A is relatively small, it can be impossible to obtain
precise estimates of the model parameters.

Example 5 For this example, we generated 5000 points from an ARMA(1,1)
process with φ1 = 0.6 and θ1 = 0.4. Figure 5 shows a contour plot of S∗(φ, θ).
We then applied the least squares parameter estimation technique. The output,
including 95% confidence intervals for the parameters and an estimate of σ2

A is
shown below. Note that the optimal values of φ1 and θ1 are reasonably close
to the true values that were used in generating the data. Also notice that the
resulting ARMA(1,1) model satisfies the stationarity condition.

>> lsexamp

sigmaa2 =

0.1006

parameter estimates with 95\% confidence intervals

ans =

0.4389 0.5521 0.6654
0.1859 0.3148 0.4438

optimal sum of squares was

ans =

503.1670

There is quite a bit of uncertainty in the parameter estimates, even though
our time series had 5000 points and σ2

A was relatively small. The problem here
is that many acceptable ARMA(1,1) models. This is shown in Figure 5 by the
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Figure 5: Contour plot of S∗(φ, θ).

large “flat spot” in the contour map. Any combination of φ1 and θ1 in this area
results in an ARMA(1,1) model with a small sum of squares. The available data
simply are not adequate to precisely pin down the parameter values.

Forecasting

Now that we can fit an ARIMA model to an observed time series, we will discuss
the problem of forecasting future observations.

Suppose that we are now at time n, and wish to predict the observations at
times n+ 1, n+ 2, . . ., n+ l. We will use the notation zn−k for the observations
up to time n. As before, we will use Zn+k for random future values of the time
series. We will use ẑn(l) for the predicted observation at time n + l based on
observations through time n.

In making a forecast ẑn(l), we want to minimize the expected value of the
square of the error in the forecast.

minE[(Zn+l − ẑn(l))2] (20)

where this expected value is conditioned on all of the observations through time
n. Obviously, we should pick ẑn(l) = E[Zn+l]. Using the ψ() function, we know
that

Zn+l =
∞∑
j=0

ψjAn+l−j = An+l + ψ1An+l−1 + . . . (21)

This infinite sum contains some terms which correspond to times up to time n
and other terms which lie in the future and are still random. To get the expected
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value of Zn+l, we take the expected value of each term on the right hand side.
For An+l and other future inputs from the white noise, this expected value is
0. For An and other past white noise inputs, the expected value of An−k is the
actual value an−k that was observed. Thus our prediction is given by

ẑ(l) =
∞∑
j=l

ψjan+l−j . (22)

The random error associated with our forecast is

en(l) = An+l + ψ1An+l−1 + . . .+ ψl−1An+1. (23)

Clearly, the expected value of en(l) is 0. Furthermore, we can work out the
variance associated with our prediction.

V ar(en(l)) = V ar(An+l) + ψ2
1V ar(An+l−1) + . . .+ ψ2

l−1V ar(An+1) (24)

V ar(en(l)) = σ2
A(1 + ψ2

1 + . . .+ ψ2
l−1). (25)

There are three important practical issues that we need to resolve before
we can actually start computing forecasts. The first problem is that we have a
time series zk, but not the corresponding ak series. To compute the a sequence,
notice that

en(1) = An+1 (26)

Thus
zn − ẑn−1(1) = an. (27)

We can use this to compute the values ak for k ≤ n. Just compute the lag 1
predictions, and subtract them from the actual values. In doing this, we may
have to refer to zk and ak values from before the start of our observations. Set
these to 0. In practice, the 0 initial conditions will have little effect on the
forecasts.

The second issue is that we may not know σ2
A. In this case, we use the sample

variance of the a values that we have computed as an estimate for σ2
A.

The third issue is that evaluating the infinite sum

ẑ(l) =
∞∑
j=l

ψjan+l−j . (28)

may be impractical. If the ψj weights decay rapidly, we can safely truncate the
series, but if the ψj weights decay slowly this may be impractical. Furthermore,
in the case of an ARIMA process with d > 0, the series will not converge!
Fortunately, it is also possible to use the two other main forms of the model

Zn = An + π1Zn−1 + π2Zn−2 + . . . (29)

or
ϕ(B)Zn = θ(B)An (30)
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for forecasting. If the model is purely autoregressive, then the π weights are the
way to go. If the model is purely moving average, then it’s best to use the ψ
weights. For mixed models, the form ϕ(B)Zn = θ(B)An is usually the easiest
to work with.

In making a forecast using any of the three forms of the model, we use the
same basic idea. We start by computing the previous ak values. Next, we
substitute observed or expected values for all terms in the model to get ẑn(l).
The expected values of all future an+k values are 0. The expected values of
future zn+k values are given by our predictions ẑn(k), k = 1, 2, . . .. We com-
pute ẑn(1), ẑn(2), . . . , ẑn(l), and then use the variance formula to get confidence
intervals for our predictions.

Example 6 The following time series was randomly generated according
to an ARIMA(1,1,1) process with φ1 = 0.3 and θ1 = 0.1. (Read across the rows.)

-0.4326 -2.1847 -2.4184 -2.2134 -3.3271 -2.3557 -0.9942
-0.7423 -0.3356 -0.0717 -0.1967 0.5102 0.0614 2.1688
2.4463 2.6571 3.7757 4.0639 4.0488 3.2215 3.3509
2.0241 2.4740 4.1611 3.8131 4.6359 6.0510 4.7563
3.0864 3.3006 2.9079 3.5201 4.4503 5.3598 6.8516
7.8388 9.2589 8.3634 8.1952 7.9900

We will use the first 35 points to predict the last five values. First, we write
out the model in the mixed form.

(1− 0.3B)(1−B)Zn = (1− 0.1B)An (31)

(1− 1.3B + 0.3B2)Zn = (1− 0.1B)An (32)

Zn = 1.3Zn−1 − 0.3Zn−2 +An − 0.1An−1 (33)

We’ll also need the first four ψ weights.

ψ(B) = 1 + 1.2B + 1.26B2 + 1.278B3 + 1.2834B4 + . . . (34)

Notice that since this is a nonstationary series, this power series will not converge
for B=1. That is OK, because we’re only going to use the first four ψ weights.

Next, we have to compute the ak for k = 1, 2, . . . , 35. The lag 1 prediction
of ẑn−1(1) is given by

ẑn−1(1) = 1.3zn−1 − 0.3zn−2 − 0.1an−1 (35)

We then use the formula an = zn− ẑn−1(1) to compute the unknown an values.

%
% Compute a(1) through a(35) from the time series.
%
a(1)=z(1);
a(2)=z(2)-1.3*z(1)+0.1*a(1);

12



for i=3:35,
a(i)=z(i)-1.3*z(i-1)+0.3*z(i-2)+0.1*a(i-1);

end;
%
% We’ll need an estimate of sigma_A^2.
%
sigmaaest=std(a(1:35))
%
% Also set future a(i) values to 0.
%
for i=36:40,
a(i)=0.0;

end;
%
% And print out everything.
%
a

The output from this script is as follows:

sigmaaest =

0.9423

a =

Columns 1 through 7

-0.4326 -1.6656 0.1253 0.2877 -1.1465 1.1909 1.1892

Columns 8 through 14

-0.0376 0.3273 0.1746 -0.1867 0.7258 -0.5883 2.1832

Columns 15 through 21

-0.1364 0.1139 1.0668 0.0593 -0.0956 -0.8323 0.2944

Columns 22 through 28

-1.3362 0.7143 1.6236 -0.6918 0.8580 1.2540 -1.5937

Columns 29 through 35

-1.4410 0.5711 -0.3999 0.6900 0.8156 0.7119 1.2902
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Columns 36 through 40

0 0 0 0 0

Now that we have the previous z and a values in place, we can go ahead and
compute the forecasts and the confidence intervals. The following script does
the work.

%
% Compute the forecasts for z(36) through z(40)
%
for i=36:40,
z(i)=1.3*z(i-1)-0.3*z(i-2)+a(i)-0.1*a(i-1);

end;
%
% Compute the variances.
%
psi=[1.2 1.26 1.278 1.2834];
v(1)=sigmaa^2;
v(2)=sigmaa^2*(1+psi(1)^2);
v(3)=sigmaa^2*(1+psi(1)^2+psi(2)^2);
v(4)=sigmaa^2*(1+psi(1)^2+psi(2)^2+psi(3)^2);
v(5)=sigmaa^2*(1+psi(1)^2+psi(2)^2+psi(3)^2+psi(4)^2);
%
% 95% CI’s.
%
disp(’ lower mean upper’);
[z(36:40)-1.96*sqrt(v’) z(36:40) z(36:40)+1.96*sqrt(v’)]

The output from this script is as follows:

>> forecast
lower mean upper

ans =

5.3232 7.1702 9.0172
4.3806 7.2657 10.1509
3.5877 7.2944 11.0011
2.9085 7.3030 11.6975
2.3125 7.3056 12.2987

Notice that the confidence intervals get wider as we move forward in time.
For this particular data set, it is impossible to make very precise predictions.

In fact, the next five points in the time series were
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7.8388
9.2589
8.3634
8.1952
7.9900

These points lie well within the 95% confidence intervals.

Sunspot Data

In this section of the notes, we’ll analyze the number of sun spots reported
during each year from 1770 to 1865. The raw data are shown in Figure 6.
Estimated auto correlations out to k = 30 are shown in Figure 7. The PACF is
shown in Figure 8. The sample spectrum is shown in Figure 9. Notice that both
the autocorrelations and the sample spectrum clearly show periodicity with a
period of about 10 or 11 years.

The initial data set appears to be stationary, so we won’t try any differencing.
The damped sine wave pattern in the autocorrelations, along with the first
two nonzero PACF coefficients suggest that an ARMA(2,0) model would be
appropriate for this data. We used the least squares technique to fit this model
to the data, and obtained the following model:

sigmaa2 is estimated as

sigmaa2 =

268.9646

phi parameters have 95\% confidence intervals

ans =

1.1389 1.3524 1.5660
-0.8742 -0.6606 -0.4471

Next, we forecast the sunspot numbers for 1866 through 1869. The forecasts
(with 95% confidence intervals) were:

Predictions for 1866-1869, with confidence intervals

ans =

-7.9842 24.1601 56.3044
-26.5730 27.4924 81.5577
-29.9734 35.8568 89.9222
-24.4648 44.9676 110.7978
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Figure 6: Sunspot Data.

It’s clear that this time period covers a relatively low part of the sunspot cycle,
with the count starting to go up by 1869. However, the confidence intervals are
quite large. In fact, the actual sunspot counts for these years were 16, 7, 37,
and 74.
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